7,364 research outputs found

    IceCube and HAWC constraints on very-high-energy emission from the Fermi bubbles

    Get PDF
    The nature of the γ\gamma-ray emission from the \emph{Fermi} bubbles is unknown. Both hadronic and leptonic models have been formulated to explain the peculiar γ\gamma-ray signal observed by the Fermi-LAT between 0.1-500~GeV. If this emission continues above ∼\sim30~TeV, hadronic models of the \emph{Fermi} bubbles would provide a significant contribution to the high-energy neutrino flux detected by the IceCube observatory. Even in models where leptonic γ\gamma-rays produce the \emph{Fermi} bubbles flux at GeV energies, a hadronic component may be observable at very high energies. The combination of IceCube and HAWC measurements have the ability to distinguish these scenarios through a comparison of the neutrino and γ\gamma-ray fluxes at a similar energy scale. We examine the most recent four-year dataset produced by the IceCube collaboration and find no evidence for neutrino emission originating from the \emph{Fermi} bubbles. In particular, we find that previously suggested excesses are consistent with the diffuse astrophysical background with a p-value of 0.22 (0.05 in an extreme scenario that all the IceCube events that overlap with the bubbles come from them). Moreover, we show that existing and upcoming HAWC observations provide independent constraints on any neutrino emission from the \emph{Fermi} bubbles, due to the close correlation between the γ\gamma-ray and neutrino fluxes in hadronic interactions. The combination of these results disfavors a significant contribution from the \emph{Fermi} bubbles to the IceCube neutrino flux.Comment: 9 pages, 4 figures, to appear in PR

    Terahertz wireless communication

    Get PDF
    The goal of this thesis is to explore Terahertz (THz) wireless communication technology. More specifically the objective is to develop and characterize several THz communication systems and study the effect of atmosphere propagation through fog droplets and dust particles on THz communications. For demonstration, a THz continuous wave (CW) photomixing system is designed. Terahertz signals are phase encoded with both analog ramp signals and pseudorandom binary data, transmitted over a short distance, and detected. The limitation of transmission bandwidth, low single to noise ratio, vibration effects are also analyzed. In order to study and compare propagation features of THz links with infrared (IR) links under different weather conditions, a THz and IR communications lab setup with a maximum data rate of 2.5 Gb/s at 625 GHz carrier frequency and 1.5 gm wavelength, have been developed respectively. A usual non return-to-zero (NRZ) format is applied to modulate the IR channel but a duobinary coding technique is used for driving the multiplier chain-based 625 GHz source, which enables signaling at high data rate and higher output power. The bit-error rate (BER), signal-to-noise ratio (SNR) and power on the receiver side have been measured, which describe the signal performance. Since weather conditions such as fog and dust exhibit a spectral dependence in the atmospheric attenuation, the corresponding impact on THz in comparison with IR communications is not equivalent. Simulation results of attenuation by fog and dust in the millimeter and sub-millimeter waveband (from 0.1 to 1 THz) and infrared waveband (1.5 µm) are presented and compared. Experimentally, after THz and IR beams propagated through the same weather conditions (fog), performance of both channels are analyzed and compared. The attenuation levels for the IR beam are typically several orders of magnitude higher than those for the THz beam. Mie scattering theory was used to study the attenuation of THz and IR radiation due to the dust particle. Different amounts of dust are loaded in the chamber to generate a variety of concentration for beam propagation. As the dust loading becomes heavier, the measured attenuation becomes more severe. Under identical dust concentrations, IR wavelengths are strongly attenuated while THz shows almost no impact
    • …
    corecore